Run Pipeline
After training your RF model in napari, you can use run_pipeline.py
to run the pipeline on a new set of images without using napari gui and only by commandline.
This allows you to run the whole pipeline on HPC or other servers as a batch job.
Usage
FeatureForest run-pipeline script
options:
-h, --help show this help message and exit
--data DATA Path to the input image
--outdir OUTDIR Path to the output directory
--rf_model RF_MODEL Path to the trained RF model
--feat_model {SAM2_Large,SAM2_Base,μSAM_LM,μSAM_EM_Organelles,Cellpose_cyto3,MobileSAM,SAM,DinoV2}
Name of the model for feature extraction
--no_patching If true, no patching will be used during feature extraction
--smoothing_iterations SMOOTHING_ITERATIONS
Post-processing smoothing iterations; default=25
--area_threshold AREA_THRESHOLD
Post-processing area threshold to remove small regions; default=50
--post_sam to use SAM2 for generating final masks
--only_extract to only extract features to zarr file without running prediction pipeline
For example if you just want to extract features from a stack, using SAM2 Large model with no patching:
python run_pipeline.py \
--data /path/to/input.tif \
--outdir /path/to/output/ \
--feat_model SAM2_Large \
--no_patching \
--only_extract
Another example, to run the whole pipeline (feature extraction, prediction, post-processing) on a stack using a trained RF model: